金属陶瓷刀具材料具有高硬度、高强度、优良的高温和耐磨性能、良好的韧性、密度小、红硬性高、高温抗氧化性好等一系列优点。碳化钽满足汽车、摩托车制造业、模具加工业、轴承加工业、航空航天业、机床业、工程机械、石墨电极、3C电子行业配套等行业市场的需求,并能打破国外企业的市场垄断地位。专业碳化钽同时,以Ti(C,N)替代战略稀缺资源钴、钨类材料,也有利于国家的战略安全和资源储备。
碳化铬可作为硬质合金的添加剂(如碳化钨基硬质合金晶粒细化剂),从而应用于矿山、机械加工等方面。碳化钽碳化铬可作为焊接材料添加剂,用它制成的焊条Chemicalbook、堆焊在某些机械设备的工作面上(如磨煤机、球磨机、鄂板等),可将使用寿命提高几倍以上。碳化钽厂家碳化铬可大量用作金属表面保护工艺的热喷涂材料。
碳化钽在硬质合金中发挥了重要作用,它通过改善纤维组织和相变动力学而提高合金性能,使合金具有更高的强度,相稳定性和加工变形能力。碳化钽碳化钽的熔点非常高(4000℃),热力学稳定性好(熔点时△Gf=-154kj/mol)。专业碳化钽钽能够特别有效地促进成核作用,防止凝固后期形成的核晶脆性薄膜中析出碳[i]。其作用主要为:(1)阻止硬质合金晶粒的长大;(2)与TiC一起形成WC和Co之外的第三弥散相,从而显著增加硬质合金抗热冲击、抗月牙洼磨损及抗氧化的能力,并提高其红硬性。
碳化物颗粒具有高强度、高硬度、与基体润湿性良好等优点。碳化钽厂家 使其作为第二相颗粒增强金属基复合材料已广泛应用于航空航天、冶金、建材、电力、水电、矿山等领域,并取得了很好的实际应用效果。碳化钽目前所见报道的碳化物颗粒主要有碳化钨(WC)、碳化钛(TiC)、碳化铌(NbC)和碳化钒(VCp)等,而与金属钒、铌同族的元素钽却研究较少。
热特性:陶瓷材料一般具有高的熔点(大多在2000℃以上),且在高温下具有极好的化学稳定性;陶瓷的导热性低于金属材料,陶瓷还是良好的隔热材料。碳化钽同时陶瓷的线膨胀系数比金属低,当温度发生变化时,陶瓷具有良好的尺寸稳定性。电特性:大多数陶瓷具有良好的电绝缘性,因此大量用于制作各种电压(1kV~110kV)的绝缘器件。碳化钽厂家铁电陶瓷(钛酸钡BaTiO3)具有较高的介电常数,可用于制作电容器,铁电陶瓷在外电场的作用下,还能改变形状,将电能转换为机械能(具有压电材料的特性),可用作扩音机、电唱机、超声波仪、声纳、医疗用声谱仪等。少数陶瓷还具有半导体的特性,可作整流器。