金属陶瓷材料三种以上物相调控方法,建立起物相与使用性能的关系,针对各种成分材料形成了Ti(C,N)黑芯相、Ti(W、Mo、Me)C过渡相及Co(Ni)金属粘结相定量技术标准。碳化铬粉末通过研究稳氮用化合物的添加,及预反应保护层的形成,稳定Ti(N、C)的化学成分,防止脱氮发生;解决了长期困扰金属陶瓷行业的加工制备过程中Ti(C,N)分解而伴随的脱氮现象造成产品质量控制十分困难的技术难题。 供应碳化铬粉末将最优配比原材料进行粉碎并混合,制得粉末混合物后,作为硬质相原料的粉末颗粒是由Ti(C,N)粒芯及WC、Mo2C包覆层构成的,即由WC、Mo2C包覆Ti(C,N)所形成的颗粒,而现有Ti(C,N)基金属陶瓷的硬质相原料则为Ti(C,N)粉或TiC与TiN的混合粉。
金属铬粉碳化法:将炭黑按13.5%~64%在(质量)的比例(比理论结合碳量11.33%还多)与用电解铬粉碎而成325目的金属铬粉末,用球磨机进行干式混合之后作为原料。碳化铬粉末添加1%~3%硬脂酸作为成型用润滑剂。供应碳化铬粉末用1 T/cm2以上压力加压成型。将该加压成型粉末放进石墨盘里或坩埚里,用塔曼炉或感应加热炉,在氢气流(氢气露点在-35℃左右)中,加热至1500~1700℃,并保持1h,使铬进行碳化反应,生成碳化铬,经冷却,制得碳化铬。
第三步:将上述原料粉2与酚醛树脂以重量比为5∶2~3的比例在混碾机中混合均匀,在40~80℃的温度下固化,然后在制粉机中粉碎制成平均粒径为50~100μm原料粉3。碳化铬粉末碳化钽粉体合成:将上述原料粉3在0.5~3Mpa的压力下压块,然后在1300℃~2000℃的温度下惰性或还原性气氛气氛烧制6-8小时制得碳化钽块体。碳化铬粉末厂家脱碳处理:将上述碳化钽块体在350~550℃的温度下氧化气氛保温6~12小时脱碳,冷却后粉碎制得碳化钽粉体。
在碳化物中,耐熔性极好的是碳化钽(TaC)(熔点3890℃)和碳化铪(HfC)(熔点3880℃),其次是碳化鋯(ZrC)(熔点3500℃)。碳化铬粉末在高温下,这几种材料机械性能极好,大大超过极好的多晶石墨,尤其碳化钽,是在2900℃-3200℃温度范围内能保持一定机械性能的材料,但其缺点是对热震极为敏感,碳化物的低导热系数和高热膨胀系数,成为宇航材料中应用的最大障碍。永州碳化铬粉末而将碳化钽加入到炭/炭复合材料中,将拥有更高的导热性和更低的热膨胀条件,发挥难熔金属的抗氧化性和耐烧蚀性。
它是一种在高温环境下具有良好的耐磨、耐腐蚀、抗氧化的高熔点的材料,与镍铬合金制得的硬质合金颗粒,采用等离子喷涂法,可作为耐高温、耐磨、耐氧化与耐酸涂层,广泛用在飞机发动机和石油化工机械器件上,可大大提高机械的寿命。碳化铬粉末也常用作硬质合金的晶粒细化剂及其他耐磨、耐腐蚀元件。以Cr3C2为基的金属陶瓷在高温下有极优异的抗氧化性能。用于碳化铬陶瓷。粗粒碳化铬作为熔喷材料在金属及陶瓷表面形成熔喷覆膜,赋予后者以耐磨、耐热、耐蚀等性能,广泛用于飞机发动机及石油化工机械器件上,以大大提高机械寿命。供应碳化铬粉末厂家亦用于喷制半导体膜。