第三步:将上述原料粉2与酚醛树脂以重量比为5∶2~3的比例在混碾机中混合均匀,在40~80℃的温度下固化,然后在制粉机中粉碎制成平均粒径为50~100μm原料粉3。金属陶瓷粉末碳化钽粉体合成:将上述原料粉3在0.5~3Mpa的压力下压块,然后在1300℃~2000℃的温度下惰性或还原性气氛气氛烧制6-8小时制得碳化钽块体。金属陶瓷粉末生产厂家脱碳处理:将上述碳化钽块体在350~550℃的温度下氧化气氛保温6~12小时脱碳,冷却后粉碎制得碳化钽粉体。
钽铌矿是指含有钽和铌地矿物的总称,可作矿石开采的,主要由钽铁矿、铌铁矿和烧绿石。金属陶瓷粉末钽铌具有熔点高、塑性好、蒸汽压低、导电导热性能好、化学稳定性高、金属表面氧化膜介电常数大,铌的热中子俘获截面小,抗酸和液态金属腐蚀能力强,具有超导性能等y系列特性。哪有金属陶瓷粉末中国是世界上铌、钽等稀有金属矿产资源至丰富的国家。
金属陶瓷刀具材料具有高硬度、高强度、优良的高温和耐磨性能、良好的韧性、密度小、红硬性高、高温抗氧化性好等一系列优点。金属陶瓷粉末满足汽车、摩托车制造业、模具加工业、轴承加工业、航空航天业、机床业、工程机械、石墨电极、3C电子行业配套等行业市场的需求,并能打破国外企业的市场垄断地位。哪有金属陶瓷粉末同时,以Ti(C,N)替代战略稀缺资源钴、钨类材料,也有利于国家的战略安全和资源储备。
金属陶瓷材料三种以上物相调控方法,建立起物相与使用性能的关系,针对各种成分材料形成了Ti(C,N)黑芯相、Ti(W、Mo、Me)C过渡相及Co(Ni)金属粘结相定量技术标准。金属陶瓷粉末通过研究稳氮用化合物的添加,及预反应保护层的形成,稳定Ti(N、C)的化学成分,防止脱氮发生;解决了长期困扰金属陶瓷行业的加工制备过程中Ti(C,N)分解而伴随的脱氮现象造成产品质量控制十分困难的技术难题。 哪有金属陶瓷粉末将最优配比原材料进行粉碎并混合,制得粉末混合物后,作为硬质相原料的粉末颗粒是由Ti(C,N)粒芯及WC、Mo2C包覆层构成的,即由WC、Mo2C包覆Ti(C,N)所形成的颗粒,而现有Ti(C,N)基金属陶瓷的硬质相原料则为Ti(C,N)粉或TiC与TiN的混合粉。
相比于现有单纯采用机械混合的方法添加WC、Mo2C,实验组通过物理包覆的方式实现了在Ti(C,N)颗粒的表面覆盖一层WC、Mo2C,因此,在烧结过程中,Ti(C,N)与WC、Mo2C的界面形成较完整的(Ti,W,Mo)(C,N)环形化合物,(Ti,W,Mo)(C,N)在粘接相金属中溶解占位从而阻碍Ti(C,N)中的Ti、N、C原子的扩散,有效抑制Ti、N、C原子在粘接相中的溶解和析出。哪有金属陶瓷粉末降低了氮碳化钛在粘接相中的溶解度,减少氮碳化钛在粘接相中溶解析出再长大导致的N分解。金属陶瓷粉末增强氮碳化钛的稳定性,使氮碳化钛晶粒细化,提高金属陶瓷的硬度和强韧性。
碳化钽是浅棕色金属状立方结晶粉末,属于氯化钠型立方晶系。目前也用碳化钽做硬质合金烧结晶粒长大抑制剂用,对抑制晶粒长大有明显效果,密度为14.3g/cm3。金属陶瓷粉末不溶于水,难溶于无机酸,能溶于氢氟酸和硝酸的混合酸中并可分解。抗氧化能力强,易被焦硫酸钾熔融并分解。哪有金属陶瓷粉末生产厂家导电性大,室温时电阻为30Ω,显示超导性质。用于粉末冶金、切削工具、精细陶瓷、化学气相沉积、硬质耐磨合金刀具、工具、模具和耐磨耐蚀结构部件添加剂,提高合金的韧性。碳化钽的烧结体显示金黄色,可作手表装饰品。